I. Hinetive of Complex reactions

I-1. Chain reactions
Rate law and reaction mechanism
Considung a reaction

$$
\begin{equation*}
\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr} \tag{1.1}
\end{equation*}
$$

According to the rate lar o, one might write rate equation as

$$
\begin{equation*}
-\frac{d\left[\mathrm{H}_{2}\right]}{d t}=-\frac{d\left[\mathrm{Br}_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[\mathrm{HB} \mathrm{~B}_{2}\right]}{d t}=k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right] \tag{1.2}
\end{equation*}
$$

(i.e., following the stoichiometry of the reaction)

But, experimentally one finds that

$$
\begin{align*}
& \text { experimentally one finds } \tag{1,3}\\
& \frac{1}{2} \frac{d[\mathrm{HBr}]}{d t}=k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}
\end{align*}
$$

which is different from (1.2)! Why?
The reason is that the macosuppic rate law is the consequence of reaction mechanism consisting of many elementary steps (or processes), each of which describes a process that takes place on the microsupic level.
Three typed of microsupic processes account for essentially all reaction mechanisms
unimolecular reaction \rightarrow first-order kinetics
bimolecular reaction \rightarrow second-order kinetics
termotecular reaction \rightarrow third-order kinetire
So, only for elementary chemical reaction (NOT necessarily for macossuptic overall reaction) the order of the reaction is equal to the molecularity.
Father investigations indicated that reaction (1.1) is in fact a chain reaction.
initiation: $\mathrm{Br}_{2}+M \rightarrow 2 \mathrm{Br}_{r}+M, k_{i}$
propagation: $\left\{\begin{array}{l}\mathrm{Br}+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H}, \quad \mathrm{kp} \\ \mathrm{H}+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br}, \quad \mathrm{kp}^{\prime}\end{array}\right.$
termination: $2 \mathrm{Br}+\mathrm{M} \rightarrow \mathrm{Br}_{2}+M, \quad k_{t}($ or k $-i)$
rate equations:

$$
\begin{aligned}
& \text { equations: } \\
& \frac{d\left[H B_{r}\right]}{d t}=k_{p}\left[B_{r}\right]\left[H_{2}\right]+k_{p}^{\prime}[H]\left[B_{r_{2}}\right] \\
& \frac{d\left[B_{r}\right]}{d t}=2 k_{i}\left[B_{r_{2}}\right][M]-2 k_{-}\left[B_{r}\right]^{2}[M]-k_{p}\left[B_{r}\right]\left[H_{2}\right]+k_{p}[H]\left[B_{r_{2}}\right] \\
& \frac{d[H]}{d t}=k_{p}\left[B_{r}\right]\left[H_{2}\right]-k_{p}[H]\left[B_{r_{2}}\right]
\end{aligned}
$$

applying steady-state approximation to $[B r]$ and $[H]$
ie. $d[B r] / d t=0$ and $d[H] / d t=0$

$$
\begin{align*}
& \therefore\left[B_{r}\right]=\left(\frac{k i}{k-i}\right)^{1 / 2}\left[B_{r_{2}}\right]^{1 / 2} \quad(\text { why ?) } \tag{1.4}\\
& \text { and } \begin{aligned}
\frac{d\left[H B_{r}\right]}{d t} & =2 k_{p}\left[B_{r}\right]\left[H_{2}\right] \quad(\text { why ?) } \\
& =2 k p\left(\frac{k_{i}}{k-i}\right)^{1 / 2}\left[H_{2}\right]\left[B r_{2}\right]^{1 / 2}
\end{aligned}
\end{align*}
$$

So, the overall rate constant, $2 k_{p}\left(\frac{k_{i}}{b_{-i}}\right)^{1 / 2}$, actually consist of three rate constants of elementary steps.
BUT, Atkin's bork Allows that the rate law follows
Homework 1

$$
\frac{d\left[H B_{r}\right]}{d t}=\frac{k\left[H_{2}\right]\left[B_{r_{2}}\right]^{1 / 2}}{\left[B_{2}\right]+k^{\prime}\left[H B_{r}\right]} \quad(1,6)
$$

which is different from (1.5)!
why? which one ie "correct"?
[Example 2] prolysis of acetaldehyde ($\mathrm{CH}_{3} \cdot \mathrm{CHO}^{2}$)

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{4}+\mathrm{CO} \tag{1.4}
\end{equation*}
$$

prover " " $3 / 2$ " (not "I") implies a complex reaction mechanism (actually a chain reaction)
initiation: $\mathrm{CH}_{3} \mathrm{CHO}_{3} \rightarrow \mathrm{CH}_{3}+\mathrm{CHO}, k_{i}$
propagation: $\left\{\begin{array}{l}\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CHO}_{\mathrm{H}} \rightarrow \mathrm{CH}_{3} \mathrm{CO}+\mathrm{CH}_{4}, \\ \mathrm{CH}_{3} \mathrm{CO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}, \\ k_{p}\end{array}\right.$
termination: $\mathrm{CH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}, k_{t}$
Cyplyins steady state approximation to $\left[\mathrm{CH}_{3}\right]$ and $\left[\mathrm{CH}_{3} \mathrm{CO}\right]$

$$
\begin{aligned}
& \begin{aligned}
\frac{d\left[\mathrm{CH}_{3}\right]}{d t} & =k_{2}\left[\mathrm{CH}_{3} \mathrm{HHO}_{\mathrm{H}}\right]-k_{2}\left[\mathrm{CH}_{3}\right]\left[\mathrm{CH}_{3} \mathrm{CH}\right]+k_{p}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]-2 k_{t}\left[\mathrm{CH}_{3}\right]^{2} \\
& =0
\end{aligned} \\
& \frac{d\left[\mathrm{CH}_{3} \mathrm{CO}\right]}{d t}=k_{p}\left[\mathrm{CH}_{3}\right]\left[\mathrm{CH}_{3} \mathrm{CHO}\right]-k_{p}^{\prime}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]=0 \\
& \therefore\left[\mathrm{CH}_{3}\right]=\left(\frac{k_{i}}{2 k_{t}}\right)^{1 / 2}\left[\mathrm{CH}_{3} \mathrm{CH}_{0}\right]^{1 / 2}
\end{aligned}
$$

rate of formation of CH_{4} is

$$
\begin{align*}
& \text { rate of formation of } \tag{1,6}\\
& \frac{d\left[\mathrm{CH}_{4}\right]}{d t}=k_{p}\left[\mathrm{CH}_{3}\right]\left[\mathrm{CH}_{3} \mathrm{CHO}_{0}\right]=\mathrm{kp}^{\left(\frac{k_{1}}{2 k t}\right)^{1 / 2}}\left[\mathrm{CH}_{3} \mathrm{CHO}_{0}\right]^{3 / 2}
\end{align*}
$$

which agrees with (1.5)
Again, the reaction (1.4) can be more. complicated because other known by-products ($\mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ etc) are not accounted for k the above reaction mechanism.
\Rightarrow Often, there is no unique mechanism for a complex reaction.

I-2. Homogeneous catalysis
A catalysis is a substance that accelerates a reaction but undegree no net chemical change. It lower the activation energy of the reaction by providing an alternative path that avoids the slow, nate-determining step of the uncatalysed reaction. [example]

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \mathrm{Ea} \simeq 18 \mathrm{kcal} \text { mol }
\end{aligned}
$$

if adding a little I^{+}
$E_{a}^{\prime} \approx 13.6 \mathrm{kcal} /$ mol
reaction rate increases 2000 -fold.

reaction coordinate
if adding an enzyme
$E_{a}^{\prime} \simeq 1.9 \mathrm{kcal} / \mathrm{mol}$!
rate increases by 10^{15} at 298 K !!
This is energetic. considerations.
Kinetically, we will use the Michadis-Menten mechanism for illustration.
Considerip the reaction sequence

$$
\left\{\begin{array}{l}
E+S \underset{k-1}{\stackrel{k}{k}} X \tag{1.7}\\
X \xrightarrow[k_{2}]{\sim} p+E
\end{array}\right.
$$

how does the rate of reaction depend on the amount of substrate $[S]$ and the amount if enzyme $[E]$?
steady state approximation to the inturncciate $[X]$

$$
\begin{equation*}
\frac{d[x]}{d t}=k_{1}[E][S]-k_{-1}[x]-k_{2}[x]=0 \tag{1.8}
\end{equation*}
$$

Let the original concentration of enzyme be E_{0}, and of subtract
be S_{0}. Then by mass balance

$$
\begin{aligned}
& E_{0}=[E]+[x] \\
& S_{0}=[s]+[x]+[p]
\end{aligned}
$$

Substituting these into (1.8)

$$
\begin{equation*}
\frac{d[x]}{d t}=k_{1}\left(E_{0}-[x]\right)\left(S_{0}-[x]-[p]\right)-k_{1}[x]-k_{2}[x]=0 \tag{1.9}
\end{equation*}
$$

In general $E_{0} \ll S_{0}$; since $[x]$ can never be lagger than E_{0}, if follows that $[x] \ll S_{0}$. If we now consider the initial rate of the reaction $d[p] /\left.d t\right|_{t \rightarrow 0}$, where $[p] \approx 0$, (1.9) can then be reduced to

$$
\begin{align*}
& \text { (1.9) can then be reduced to } \\
& {[X]}
\end{aligned}=\frac{k_{1} E_{0} S_{0}}{k_{1} S_{0}+k_{1}+k_{2}} \quad \begin{aligned}
\left.\therefore \frac{d[P]}{d t}\right|_{t \rightarrow 0} & =k_{2}[x]=\frac{k_{1} k_{2} E_{0}}{k_{1}+\left(k_{1}+k_{2}\right) / S_{0}} \\
& =\frac{V_{m}}{1+K_{m} / S_{0}} \tag{1.11}
\end{align*}
$$

Where

$$
\begin{aligned}
& V_{m}=k_{2} E_{0} \\
& K_{m}=\left(k_{1}+k_{2}\right) / k_{1}=\text { Michaelis constant }=\frac{[E][5]}{[X]}
\end{aligned}
$$

$$
V_{m}=k_{2} E_{0}
$$

at very high initial substrate concentrations,

$$
\left.\frac{d[P]}{d t}\right|_{t \rightarrow 0} \simeq V_{m}=k_{2} E_{0}
$$

So, $k 2$ in also called the turnover number, which is the number of molecules of product per molecule of enzyme that can be created per unit time.
(1.11) can be rewritten as

$$
\begin{aligned}
& \frac{1}{v_{0}}=\frac{1}{V_{m}}+\frac{K_{m}}{V_{m} s_{0}} \\
& v_{0} \equiv d[p] /\left.d t\right|_{t \rightarrow 0} \\
& \text { a plot of } \frac{1}{v_{0}} \text { vs. } \frac{1}{s_{0}}
\end{aligned}
$$

for determining the rate constants.

II. Photochemisty

Ovenien

II-1. Absoption and Emission
\& Beer-Lambert low

$$
\begin{equation*}
I / I_{0}=\exp (-\sigma n l) \tag{2,1}
\end{equation*}
$$

σ : atsouption cross section
\therefore The fration of molecules being excited

$$
\begin{equation*}
=1-\exp (-\sigma n l) \tag{2.2}
\end{equation*}
$$

§ Einstein coefficients
$\rho(\nu)$: enegyy densty per unt fraguency (ey. t^{-1} / cm^{3})
$I(v)=$ intensity (ey $/ \mathrm{cm}^{2}$)
$I(\nu)=\rho(\nu) \cdot C$
(2,5)

Assuming $n_{2} \ll n_{1}$, the number deary of photons being absorbed 9

$$
\begin{equation*}
-\frac{d I(\nu) d \nu}{c h \nu}=-d n_{1} \tag{2.6}
\end{equation*}
$$

from (2.3) and (2.6)

$$
\begin{align*}
\text { film } & \frac{I(\nu) d \nu \sigma(\nu) n_{1} d l}{c h \nu}=n_{1} B_{12} \rho(\nu) d t \tag{2.7}\\
\rightarrow & B_{12}=\frac{c \sigma(\nu) d \nu}{h \nu}
\end{align*}
$$

(where $c=d l / d t$,hae been used)
at equilibrium $\quad d n_{1} / d t=0$

$$
\begin{equation*}
\frac{n_{2}}{n_{1}}=\frac{B_{12} \rho(\nu)}{B_{21} \rho(\nu)+A_{21}} \tag{2.9}
\end{equation*}
$$

from (2.3), Boltzmann distribution for n_{2} / n_{1}, and the blackbody radiation distribution for $\rho(\nu)$
$\rightarrow B_{12}=B_{21} \frac{g_{2}}{g_{1}} \quad$ (micosospic reversibility)

For a two level system $\quad A_{21}=\frac{1}{\tau}$
ξ Franck-Condon Principle

$$
\quad \int_{12>} \quad \int_{21}=\frac{64 \pi^{2} \nu^{3}}{3 \hbar c^{3}}\left|\mu_{21}\right|^{2}
$$

transition dipole moment, μ_{21}

$$
\begin{equation*}
\left|\mu_{21}\right|^{2}=\left|e \int \varphi_{e_{2} v_{2}}(x, R) \cdot r \varphi_{e_{1} v_{1}}(r R) d r d R\right|^{2} \tag{2.13}
\end{equation*}
$$

From Bon- Oppenheimer approximation
R 11

II-2 The fates of exalted molecules
Quantum yreeld \equiv probability of events of interest per photon absorption by the system.
(A) Fluorescence / quenching

$$
\begin{array}{ll}
I_{2}+h \nu \longrightarrow I_{2}^{*}, & I \cdot \sigma \\
I_{2}^{*}+H e \longrightarrow I_{2}^{*}, & k q \\
I_{2}^{*} \longrightarrow I_{2}+h \nu^{\prime}, & k f
\end{array}
$$

Let the flewrescemce intensity with and without $H e$ be I_{f} and I_{f}°,
Homework 2 then $\frac{I_{f}^{0}}{I_{f}}-1=\frac{k g[\mathrm{He}]}{k_{f}}$ (prove it!) (2.15)
(B) Internal conversion (IC) \& Intersystem crossing (ISC)

$$
I C\left(S_{1}^{*} \rightarrow S_{0}^{\neq}\right) \quad \operatorname{ISC}\left(S_{1}^{*} \rightarrow T_{1}^{\neq}\right)
$$

Internuclear separation

Energy redistribution can ocam from one electronic state to the other electronic states (radiation Less processes), often through "conical "intersections or other potential energy surface intersections.
Conserved quantities: envy, angular momentum, parity.
BUT, how do we know if IC or ISC has occurred or not?

- Compare the fluorescence lifetime with the integrated absorption cross section. This is because that if IC or ISC occurs, the measured fluorescence lifetime will be shorter than that expected from the integrated absaiption cross section. (Recall (2.8), (2.11)).
- examine the fluorescence lifetime as a function of vibrational excitation in the S_{1} manifold of states
[Example] Benzene, is excited state 'Bu fluorescence lifetime measurement undu collision-free conditions.

JCP 55 (1971)5561
(0), ${ }^{\prime} B_{2 \mu}$
V_{6} : $C-C$ bending mode
V_{1} : symmetric stretch V_{16} : out-of-plame bend

Observation 1: the lifetime decreases rapidly with increasing vibrational energy
observation 2: The lifetime decreases more dramatically with the number of quanta of V_{16}
\rightarrow the ' $B_{2 \mu}$ state undergoes an internal conversion to the highly vibrational rated So states, and V_{16} mote is a "promoting" mode.

- fluorescence quantion yield $\left(\phi_{f}\right)$ measurement.

For 0° level of benzene, ϕ_{f} is found to be 0.25 .
From the figme, the nor radiative lifetime for the 0° level is $128 n s$.

$$
B^{*}\left(0^{\circ}\right) \xrightarrow[k_{n r r}]{\overrightarrow{k r}} B^{\neq}
$$

k_{r} : radiative decay rate
kr: non radiative decay rate
kinetically, it is a parallel process

$$
k_{\text {total }}=k_{r}+k_{n s}
$$

and $\tau_{\text {obs. }}=1 / k$ total

$$
\begin{aligned}
& \because \phi_{f}=\frac{k r}{k_{r}+k_{n r}}=0,25 \\
& \quad \therefore k_{n r}=3 k_{r}=\frac{1}{128 \mathrm{~ns}} \\
& k_{\text {tala }}=4 k_{r}=\frac{1}{\tau_{0 \text { os }} .} \\
& \quad \therefore k_{r}=2,6 \times 10^{6} \mathrm{sec}^{-1} \quad \text { or } \tau_{r}=385 \mathrm{~ns}
\end{aligned}
$$

and $T_{\text {cots }}=96 \mathrm{~ns}$
(C) Intramolecular Vibrational Energy Redistribution (IVR)

In lase polyatomic molecules, due to the coupling of different Whrational modes by small perturbations (anharmonicity, Fermi resonance, Coriolis couplings ate), energy can be redistributed (ie. can flow from one mode to the other) even without collisions. (An assumption of the RRKM thorny if unimolecular dissociation) (example anthracene 0 OO)

Adv. Chem. phys. 70 (1998) 265 .
low excitation: well-vopolved spectrum; exponential decay intermediate exaltation: complicated spectrum; modulated decay (quantum beat) high exaltation: broad, lumped spection; chaotic decay
(D) photodissociation

Excitation of molecules can result in dissociation into two or more fragments, ie., a bond-breaking unimolecular reaction.
It can be classified into two types: direct and indirect.
Direct: dissociation takes place on a single exited potential energy surface and normally it completes on the time scale of a few vibrational periods.

Indirect: dissociation involves more than one (Born-Oppenkeimer approximate) potential ency surfaces. Usually it takes much longer time than the direct dissociation.

Experimental "signatures" for direct or indirect dissociation
and the underlying mechanisms
(1) fragment translational energy distribution
direct: loge kinetic energy release, normally peaks from zero
indirect: depending on the PES over which the dissociation occurs

(2) fragment angular distribution
direct: fast (compared to the rotation of the photerexated parent molecules, typically $\sim p s$)
\rightarrow anisotropic distribution
Indirect: plower or comparable to the parent rotation
\rightarrow isotropic distribution or nearly so
Let us now examine more closely the angular distribution of a direct dissociation process.

Before the phutrerotation, the molecules are randomly distributed 14 in all direction, A lineally polarized light is used to photrdissonte the molecule. Upon the atsopptoin of the photon, the exalted molecules have a prefered direction according to the excitation probability of $|\underset{\sim}{\mu} \cdot E|^{2}$, where μ is the transition dipole moment and E is the deictic field of the light. Thus, the photrosuted molecules will have a distribution of alignments proportional to $\cos ^{2} \theta, \theta$ is the angle between $\underset{\sim}{\mu}$ and E. If the rated molecule will dissociate very appidy composed to its rotational time scale, then the recoil velocity v of the fragment, which has a fixed velationsipp to the truastion dipole μ, will ala be aligned. For sample, $A B \xrightarrow{\hbar \nu} A+B$, of μ is along the $A-B$ bond axis, a fact direct dissociation will lend to a recoil angular distribution of $\cos ^{2} \theta$ In general, $I(\theta)=\frac{1}{4 \pi}\left[1+\beta P_{2}(\cos \theta)\right]$ where $P_{2}(\omega \theta)=\frac{1}{2}\left(3 \omega^{2} \theta-1\right)$ is the second Legendre pignowial and $\beta=2 P_{2}(\cos x)$ with x as the angle between μ and the recoil direction v. The value of β, the auristoppy parameter, live between -1 and 2 . Cossideung the limiting cases:

$$
\begin{array}{lll}
\beta=2 & \therefore \cos x=1 & \text { ie. } \underset{\sim}{\mu} \| \tilde{\sim}, \quad \\
\beta=-1 & \therefore \cos x=0 & \text { ire. } \\
\underset{\sim}{v} & \underset{\sim}{v}
\end{array}, \quad I(\theta)=3 \cos ^{2} \theta
$$

So, the angular distribution, or the β-value, can provide information abate the direction of the transition dipole $\underset{\sim}{\mu}$ which in twin can tell we about the symmetry of the electronic exited state.
BUT, of the parent molecule rotated before dissociation, the alignment of the recoil vloaty with respect to the polarization direction of the dissociating light, ie., the β-value, will be reduced substantially. \rightarrow lifetime of dissociation process.

Summary of a fur key concepts
(1) A complex reaction, such as a chain reaction, and a homogeneous catalys is ate, always consists of many elementary chemical reactions. To interpret the impinical rate law and other experimental obsewation, a reaction mechanism is proposed with a set of coupled rate equations. To validate the proposed reaction mechanism, one can apply steady state approximations to the reaction intermediates (or wing the computer to solve the coupled differential equations numerically) for a consistent rate law. However, even if the proposed reaction mechanism agrees with experiments, it will not be unique; as more data beome available, additional vacations may need to be added to the reaction mechanism to account for the new observations.
(2) Photorxcitation of a molecule can induce many competing processor

Typical time sales
fluoresceme: $10^{-9}-10^{-6} \mathrm{~s}$
phosphorescence: $10^{-4}-1005$
IC/ISC: $10^{-12}-10^{-4} \mathrm{~s}$
direct dissociation: $10^{-14}-10^{-13} \mathrm{~s}$
indirect dissociation: $10^{-12} \rightarrow 10^{-6} \mathrm{~s}$
(depending on the size of the parent)
Modern-day's experimental techmignes enable the real-time measmement even for a direct photodissociation process \rightarrow femtochemistry
BuT, recalling the uncertainty principle, $\Delta E \cdot \Delta t \leq \hbar$!
III. Molecular Reaction Dynamics

Overview : What is reaction "dynamics"?

- A microscopic (or molecular) view of a chemical transformation (ie. . Wow the bond-breateing and bondforming processes take place).

$$
A(a)+B(b) \longrightarrow C(c)+D(d)
$$

III -1. Concept of σ

In analogy to a beam of light attenuated by absoption (Beer-Lambert law), the initial beam flux (I_{0}, in modeculdanis) is attenented by collisions with the tacet molecule B.

$$
I_{x}=I_{0} \exp (-x / \lambda)
$$

where $\lambda=$ mean free path (the average distance a molecule travels between collisions).
Since the probability of a beam of molecule A undergoing a collision in the interval x to $x+\Delta x$ is given by $\Delta x / \lambda$ and it should also be proportional to the number density n_{B} of the tagest molecule B, we have $\Delta x / \lambda \propto n_{B} \Delta x$. The collisional cross section σ is taken to be the proportional constant such that

$$
\begin{equation*}
1 / \lambda=\sigma n_{B} \tag{3,2}
\end{equation*}
$$

Equation (3.1) become $I_{X}=I_{0} \exp \left(-\sigma n_{B} x\right)$
the dimension of σ is area/motecule, e.g. $\mathrm{cm}^{2} /$ molecule Ce typical gas kinetic cross section $\sim 30 \AA^{2}$ or $2 \times 10^{-10} \mathrm{~cm}^{3} /$ molecule $\cdot s$ or $\sim 6 \times 10^{6}$ forms ${ }^{-1}$

III-2. Relationship between σ and k
$I(x)-I(x+\Delta x)$ corresponds to the decrease of the beam intensity in a volume enclosed by two unit areas separated by a distance ΔX, so the number of $A-B$ collisions per uni volume per unit time is

$$
\text { time is } I I(x)-I(x+\Delta x] / \Delta x=-\frac{d I}{d x}
$$

This is also a rate and can be expressed as

$$
\begin{equation*}
-d I / d x=-d n_{2} / d t=k n_{A} n_{B} \tag{3.3}
\end{equation*}
$$

where $v_{A}(x)=I(x) / v$
From (3.1) and (3.2) one obtains

$$
\begin{align*}
& \text { From (3.1) and -(3.2) one oflains } \\
& -d I / I d x=-d \ln I / d x=\frac{1}{\lambda}=\sigma n_{B} \tag{3.5}\\
& \text { From (3.4) }-d I / d x=I \cdot \sigma n_{B}=\sigma v n_{A} n_{B}
\end{align*}
$$

compared $(3,3)$ and $(3.5), \quad k=\sigma V$
Equation (3.6) refers to collisions for which the relative velocity is well-defined both in magnitude and direction.

BUT, the thermal rate constant $k(T)$ refers to the rate 18 coefficient at the tempenative T; these, need to perform Boltzmann averaging of equation (3.6). If the velocities of A and B are described by Maxwell-Boltzmann distributions

$$
\text { then } \begin{align*}
f(T) & =\left(\frac{\mu}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty} v \sigma(v) \exp \left(-\mu v^{2} / 2 k T\right) 4 \pi v^{2} d v \\
& =\frac{1}{k T}\left(\frac{8}{\pi \mu k T}\right)^{1 / 2} \int_{0}^{\infty} E_{t} \sigma\left(E_{t}\right) \exp \left(-E_{t} / k T\right) d E_{t} \tag{3.1}
\end{align*}
$$

Homework 3
Prove (3.7) \& (3.8)
where $E_{t}=\frac{1}{2} \mu v^{2}$ and $\mu=m_{A} m_{B} /\left(m_{A}+m_{B}\right)$ is the reduced mass of $A+B$.

Quantum mechanically, an atom or a molecule has quantized internal energy level structures. The moat fundamental quantity at the integral coss section level of detail is the state-fo-state one, $\sigma\left(i \rightarrow f ; E_{t}\right)$. The total collisional cross section can be expressed as

$$
\begin{equation*}
\sigma\left(E_{t}\right)=\sum_{i} F_{i} \sum_{f} \sigma\left(i \rightarrow f ; E_{t}\right) \tag{3.9}
\end{equation*}
$$

where E_{t} : the relative translational energy of two reactants.
F_{i} : normalized population factor of reactants is the state of $i=(a, b)$.
III-3. Reaction probability and the impact parameter
Equation (3.9) gives the collisional cross section. The reaction cuss section refers to the rate of those collisions which lead to a chemical reaction. It in a measure of the effective size of the molecules as determined by there propensity to react. Thus, it is necessarily smaller than the collisional cross section which governs the rate of all collisions, irrespective of their outcomes. The ratio of $\sigma_{r x} / \sigma_{\text {rial }}$ ie then a rough measure of the reaction probatility.

To gain further insights into reaction probability, we will introduce 19
the concept of impact parameter, b, which is the distance of closest approach of the two molecules, in the absence of interactions.

For a given initial energy and impact parameter, the collisional trajectory is uniquely specified - at least classically. If the molecules are randomly oriented in space, then the collisions with impact parameters in the range of b to $b+d b$ are equally probable. The
Corresponding cross section, ie., the effective area, is

$$
\begin{align*}
& d \sigma=2 \pi b d b \tag{3,10}\\
& \sigma=2 \pi \int b d b
\end{align*}
$$

(3.10) assumes the collision has unit probability to reaction, which is not
necessarily be the case. In general, we define the reaction probability $P(b)$, or the opacity function, as the fraction of collisions with impact parameter b that leads to reaction. Two features regarding
$p(b): \quad$ (i) $0 \leqslant p(b) \leqslant 1$ and (ii) $p(b) \rightarrow 0$ as b becomes
loge $(\rightarrow \infty)$, the $\sigma_{R}=2 \pi \int_{0}^{\infty} P(b) \cdot b d b$.
III-4. A few simple collision models
(A). Hard-sphere model

In terms of opacity function

(3.11) d(3.12) lead to $\sigma_{R}=\pi b_{\text {max }}^{2}$

So, σ_{R} is a constant, independent of collision energy and the internal states. From equation (3.7) $r(3.8)$, one has

$$
\begin{align*}
k(T) & =\left[8 / \pi \mu(\mathrm{KT})^{3}\right]^{\frac{1}{2}} \int_{0}^{\infty} E \cdot\left(\pi b_{\text {max }}^{2}\right) \exp (-E / K T) d E \\
& =b_{\text {max }}^{2}(8 \pi k T / \mu)^{1 / 2} \tag{3.14}
\end{align*}
$$

i.e., a \sqrt{T}-dependence. Clearly, this iva too simple model to account for the usual Arrherious behavior, $k(T)=A \exp \left(-E_{a} / K T\right)$.
(B) Modified hard-sphere model

The simplest modification to the above model is to add another constraint for reaction, i.e.,

$$
\begin{align*}
\sigma_{R}(E) & =0 & & E<E_{0} \tag{3.15}\\
& =\pi b_{\text {max }}^{2} & & E \geq E_{0}
\end{align*}
$$

Then, $k(T)=\left[8 / \pi \mu(k T)^{3}\right]^{3 / 2} \int_{E_{0}}^{\infty} E \cdot\left(\pi b_{m x}^{2}\right) \exp (-E / k T) d E$

$$
\begin{equation*}
=(8 \pi k T / \mu)^{\frac{1}{2}} b_{m \times x}^{2}\left(1+E_{0} / k T\right) \exp \left(-E_{0} / k T\right) \tag{3.16}
\end{equation*}
$$

BINGO! (3.16) is very much like an Arrhenious form.
BUT, it dose not appear to be reasonable in that E_{0} is the same for all values of b. Intuitively, a "Lea don" collision (smal le b) may have a greater chance to react than a "grazing" one (larger b).
(c) Line-If-centers model

$$
E=\frac{1}{2} \mu v^{2}=\frac{1}{2} \mu\left(v_{土}^{2}+v_{11}^{2}\right) \quad \text { (3.17) }
$$

The first term is the collision energy along the line of centers, which is assumed in the model to be effective in bring about reaction, and the second term ie the centrifugal energy.
Since $V_{\perp}=v \cos \varphi$
and
$\operatorname{cose} \varphi=\sqrt{d^{2}-b^{2}} / d$.
(3.18)
then $E_{\perp}=E\left(1-b^{2} / d^{2}\right)$

The model now requires $E_{\perp} \geq E_{0}$ for reaction to occur, ie, $\left(E-E_{0}-E b^{2} / d^{2}\right) \geq 0 \quad(3.21)$
We take max as the lageet value of b that satisfies (3.21),

$$
\begin{equation*}
\text { so } b_{m a x}=d\left(1-E_{0} / E\right)^{1 / 2} \tag{3,22}
\end{equation*}
$$

or $\sigma_{R}=\pi b_{\text {max }}^{2}=\left\{\begin{array}{cc}0 & E \leqslant E_{0} \\ \pi d^{2}\left(1-E_{0} / E\right), & E>E_{0}\end{array} \quad(3.23)\right.$

physically, a more reacomatle
ene ry dependence - no longer
the step-function dependence.
$\therefore k(T)=(8 / \pi \mu(k T) 3)^{1 / 2} \int_{E_{0}}^{\infty} \pi d^{2}\left(E-E_{0}\right) \exp (-E / K T) d E$

$$
=\left(\pi d^{2}\right)(8 k T / \pi u)^{2}=\exp \left(-E_{0} / k T\right)
$$

(3.24) can be viewed as the product of three terms, (had sphere σ)(mean $\bar{v}(T))$. (Arrhenion factor).

The activation energy, $E a$, is

$$
\begin{equation*}
E_{a} \equiv-K \frac{d \ln k}{d(1 / T)}=\frac{1}{2} K T+E_{0} \tag{3,25}
\end{equation*}
$$

The major problem with this model is that the obsewed pre-exponential factor in often much smaller than the hard-sphere collision rate. At least two reasons for that: (i) It in still a hard sphere model by nature; the intermolecular interaction is ignored. (ii) Intuitively, one may expect that the activation barrier height will depend on the orientation of the reagents due to the anisotropic interaction potential.

$$
\text { ie., } E_{0}(r)
$$

OCKer
the steric effects!
III-5. Transition State Theory (TST or ACT)
The first theoretical attempt to determine the absolute reaction rates, introduced by Eyring, Evans and polanyi in 1935, and discussed more deeply by Wigner in 1938. There are many ways to derive the expression of TST. All of them are based on (i) Bom-Oppenheimer approximation which separates the electronic and nuclear motions; and
(ii) canonical ensemble, ie., the reactant molecules are distributed among their stated in accordance with Moxwell-Boltmann distribution. In addition, there are few assumptions in moet of textbooks. We will introduce the assumption's and then use the simplest approach (ie., the least rigorous way, to derive the TST.
(A) Assumptions in canonical TST.
(i) Molecular systems that have crossed the transition state in the direction of products can not tain around and reform reactants (ie, no recrossing; "point of no retiun").
(ii) at transition state, motion along the reaction coordinate may be separated from the other motions and treated classically as a translation.
(iii) Even is the absence of an equilibrium between reactant and product 23 molecules, the transition states that are becoming products are distributed among their states according to the Moxwell-Boltzmann laws (ie, a "quasi-equilibriam hypothesis").
[It can be shown that (iii) ie not necessary since it follows from (i)]

(B) Derivation of TST

Derivation of TST
The simplest approach is based on a kinetic model
$(3,26)$

$$
\begin{align*}
& A+B \underset{\sqrt{k-1}}{\stackrel{k}{l}} X^{\neq k_{2}} C \tag{3,26}\\
& \frac{d[c]}{d t}=k_{2}\left[x^{\neq}\right] \tag{3.27}\\
& =\left[k_{2} k_{1} /\left(k_{1}+k_{2}\right)\right][A][B] \text { why? (3.28) } \tag{3.28}\\
& \simeq\left(k_{2} k_{1} / k_{1}\right)[A][B] \text { why? (3.29) } \\
& \frac{d[c]}{d t}
\end{align*}
$$

Recalling $k_{1} / k+1$ is the equilibrium constant for $A+B \rightleftharpoons X^{\ddagger}$ Using statistical the modynamice,

$$
\begin{align*}
& \text { Using statistical the modynamice, } \tag{3.30}\\
& \qquad d[C] / d t=k_{2} \frac{Q_{00 t}^{\ddagger}}{Q_{A} Q_{B}} \exp \left(-E_{0} / K T\right)[A][B]
\end{align*}
$$

\qquad Where $Q_{\text {Fit }}^{\neq t}$ is the total portion function per unit volume of the transition state $X^{\ddagger}, Q_{A} \& Q_{B}$ are those for the reactants, and E_{0} is the lowest energy level of the transition state relative to that of the reactants. [The partition function is the number of states that are available to the system at a given temperation, $q \equiv \sum_{n} \exp \left(-\epsilon_{n} / k T\right)$. 7

What is k_{2} ?

$$
\begin{equation*}
\operatorname{From}(3,21) d[c] / d t=k_{2}\left[x^{\ddagger}\right]=k_{2} N_{f}^{\ddagger}=\left(k_{2} / 2\right) N^{\ddagger} \tag{3.31}
\end{equation*}
$$

where $N_{f}^{\neq}=N_{b}^{\neq}=N^{\ddagger} / 2$ (from assumption (i), why?) have been used.
From assumption (ii), $k_{2}=\bar{v}_{s} / 2 \delta$
\bar{v}_{s} is the average velocity (1 -dim) along the reaction coordinate (s)

$$
\begin{equation*}
\overline{v_{s}}=\left(2 \mathrm{KT} / \pi \mu_{s}\right)^{1 / 2} \tag{3.32}
\end{equation*}
$$

and $\mu_{s} \equiv$ reduced mass for motion through the dividing surface with width δ. Inserting (3,32) into $(3,30)$, then

$$
\begin{equation*}
\frac{d[C]}{d t}=\left(\frac{2 K T}{\pi \mu_{S}}\right)^{\frac{1}{2}} \frac{1}{2 \delta} \frac{Q_{D_{t}}^{\neq t}}{Q_{A} Q_{B}} \exp \left(-E_{0} / K T\right)[A][B] \tag{3.34}
\end{equation*}
$$

What are μ_{s} and δ ?
From assumption (ii) $Q_{\text {TIt }}^{\neq}=Q_{s} \cdot Q^{\neq \prime}$
Where Q_{s} is the partition function for motion along reaction coordinate, and $Q^{\neq 1}$ is that for all other $3 N-7$ degrees If freedom of the transition state. On "pactick-in-box" model, it can be shown that

$$
\begin{equation*}
Q_{s}=\left(2 \pi \mu_{s} K T\right)^{\frac{1}{2}} \delta / h \tag{3,36}
\end{equation*}
$$

Insetting (3.35) and (3.36) into (3.34)

$$
\begin{equation*}
\frac{d[c]}{d t}=\frac{K T}{\hbar} \frac{Q^{\neq \prime}}{Q_{A} Q_{B}} \exp \left[-E_{0} / K T\right][A][B] \tag{3.37}
\end{equation*}
$$

but kinetically, $\frac{d[C]}{d t}=k[A][B]$
Thus, $k_{T S T}=k_{\text {abs. }}=\frac{K T}{h} \frac{Q^{\neq 1}}{Q_{A} Q_{B}} \exp \left(-E_{0} / K T\right)$
Note that δ, μ_{s} etc are can led out in (3.38), What a miracle!
(c) A few comments on TST.
(i) TST is not just for bimolecular reaction, it is also applicable to unimolecular reaction, exapt (3.38) becomes

$$
\begin{equation*}
k_{\text {uni }}=\frac{K T}{\hbar} \frac{Q^{\neq \prime}}{Q_{A}} \exp \left(-E_{0} / K T\right) \tag{3,39}
\end{equation*}
$$

(ii) the physical meaning of (3.38)

$$
\begin{equation*}
k_{T S T}(T)=\frac{K T}{\hbar} \frac{Q^{\neq \prime}}{Q_{A} Q_{B}} \exp \left(-E_{0} / K T\right) \tag{3.38}
\end{equation*}
$$

The faction $\frac{K T}{\hbar}$ is typically $\sim 6 \times 10^{12} \mathrm{~S}^{-1}$ at room temperature. Recalling the paction function for a hammomi vacillator, $Q_{v} \cong \frac{k T}{\hbar \nu}$, these $\frac{K T}{\hbar}$ combe viewed as the frequency at which the reactants attempt to get to the transition state: The factors $\frac{Q^{\neq 1}}{Q_{A} Q_{B}} \exp \left(-\sigma_{0} / k T\right)$ determine the ratio of the number of states available to the activated complex (les one degree of The reaction nate, $k T s T$, in fuss the frequency- 9 -attempt times this ratio. BUT, k IST is the upper found to the tire k. (why?)
(iii) A thermodynamic. view of the TST rate constant (more widely weed in solution phase kinctice)
where $K^{\neq \prime}=\frac{Q^{\neq 1}}{Q_{1} Q_{B}} \exp \left(-E_{0} / K T\right)$
$K^{\neq \prime}$ can be thought are a sot of equilibrium constant describing

$$
\begin{equation*}
-R T \ln K^{\ddagger^{\prime}}=\Delta G^{\neq} \tag{3,42}
\end{equation*}
$$

$$
\begin{align*}
\quad-R T \ln K^{+}= & \Delta q^{\prime} \tag{3,43}\\
\therefore \quad k T S T T & =\frac{k T}{\hbar} \exp \left(-\Delta q^{\ddagger} / R T\right) \tag{3.44}\\
& =\frac{k T}{\hbar} \exp \left(\Delta S^{\ddagger} / R\right) \exp \left(-\Delta H^{\ddagger} / R T\right)
\end{align*}
$$

where $\Delta G^{+}=\Delta H^{+}-T \Delta S^{*}=$ the change in Gibbs free energy in going from the reactants to the activated complex ere.
In the case of an ideal gas, as an exanglle,

$$
\begin{align*}
& \Delta H=\Delta(E+P V)=\Delta E+\Delta n R T \text { (3.45) } \\
& \text { for } A+B \rightleftharpoons X^{\ddagger} \quad \Delta n=-1 \\
& \therefore \Delta H^{*}=\Delta E^{\ddagger}-R T \tag{3.46}\\
& \text { and } \triangle E^{\ddagger} \text { ie the activation energy in point from reatauts to actuated complase }
\end{align*}
$$

ie. $\Delta E^{\ddagger}=E_{a}$

$$
\begin{align*}
& \text { ie. } \Delta E^{\ddagger}=E_{a} \tag{3,47}\\
& \therefore k I T(T)=\frac{K T}{\hbar} \exp \left(\frac{\Delta S^{\ddagger}}{R}\right) \cdot e^{1} \cdot \exp \left(-E_{a} / R T\right)
\end{align*}
$$

Compared to the Arrhemere form $k=A \exp (-E a / R T)$,
one has $A=\frac{K T}{\hbar} e^{\prime} \exp \left(\Delta S^{\ddagger} / R\right)$
So, the pre-exponential factor A corresponds to an entropy of activation. Forafimotecular reaction, ΔS^{\ddagger} ie always a negative quantity (why??). Smaller A means ΔS^{\ddagger} more negative, or the activated complex is more "ordered". In collision models, the steric factor iv much smaller than unity. In TST, there are few accessible states of the complexes.
III-6. Statistical (or Tolmen) interpretation of $E a$
In general, the thermal rate constant can be expressed as

$$
\begin{equation*}
k(T)=\int_{0}^{\infty} k(E) \exp (-E / K T) / Q d E \tag{3.49}
\end{equation*}
$$

Where $Q=Q_{t} Q_{I}$ is the canonical partition function of the reactants.
The experimental (Arrhenime) E_{a} is defined as

$$
\begin{aligned}
E_{a} & \equiv-K \frac{d \ln k(T)}{d(1 / T)} \\
& =\frac{\int_{0}^{\infty} E k(E) \exp (-E / k T) d E}{\int_{0}^{\infty} k(E) \exp (-E / K T) d E}+K \frac{d \ln Q}{d(1 / T)} \text {, (provident) (3.50) }
\end{aligned}
$$

The second term in the average energy of the reactants (why?),

$$
\begin{aligned}
& \text { second term in the average } \\
& \text { ie }\langle E\rangle=-K \frac{\ln Q}{d(1 / T)}=\left\langle E_{t}\right\rangle+\left\langle E_{T}\right\rangle=\frac{3}{2} k T+\left\langle E_{工}\right\rangle \quad \text { (3.51) }
\end{aligned}
$$

The first term in the average energy of the distribution $k(E) \exp (-E / K T)$. Thus, it is the average energy of "the group of reactants which undergo reaction", denoted as $\left\langle E^{*}\right\rangle$.

$$
\begin{align*}
& \therefore \quad E_{a}=\left\langle E^{*}\right\rangle-\langle E\rangle \tag{3,52}\\
& \uparrow \quad \uparrow \text { verge energy } \\
& \text { average ency } \quad \text { of all reactants. } \\
& \text { "rearing "eratants }
\end{align*}
$$

Note (i) It is often the case that $\left.E_{0}\right\rangle\langle E\rangle$, po that only the Boltzmann tail in the posthreshold energy region contributes to the magnitude of $k(T)$.
(ii) There is a rough correspondence (but rot identical) of the activation nagy (E_{a}) with the threshold ene orgy (E_{0}). The latter, E_{0}, is not necessarily the pane as the hight of the potential energy bavier, E_{b}.

III-7. Potentitial energy surface (PES)
Boon-Oppecheimer approximation: separation of electronic and numen maxims due to the lase disparity in time scales.
\rightarrow The chemical reaction is envisioned as the nuclear motions over the electronic (potential) energy surface.

Simple collision model : height of the barrier to reaction.
Trauation state theory : the shape of PES in the vicinity of the saddle point (the trausitoin state) in order to calculate the partition function for X^{\neq}.
Reaction dynamist thy to understand chemical reactivity at the molecular level (i.e., beyond just the thermal rate constant $k(T)$).

- What is the energy distribution of reaction products?
- Is translational energy more effective in promoting a reaction than the vibrational energy of reactants?

So, need to know more about PES - not just near the transition state region, and about the relationship between the featured of PES and the dynamics consequence.
e.g. barier location? potential well? mass effects?
(A) Some microscopic mechanisms and typical profiles of the reaction path Micuosospir mechanisms
(i) direct reaction (abstraction reaction)

- "Simultaneous" (old) bond-breaking and (new) bond forming egg.

$$
\begin{aligned}
& \mathrm{F}+\mathrm{H}_{2} \rightarrow \mathrm{HF}+\mathrm{H} \\
& \mathrm{~K}+\mathrm{CH}_{3} \mathrm{I} \rightarrow \mathrm{KI}+\mathrm{CH}_{3}
\end{aligned}
$$

(ii) indirect reaction (complex-forming reaction)

- sequential steps in bond formation and bond rupture
(The distinction between (i) and (ii) is the time scales; the internal motion is used ar the time clock.)
(a) Insertion reaction - upon complex formation, two new bonds and
one old bond are simultaneously formed and broken, respectucly. e.g. $\left.\mathrm{O}^{\prime} \mathrm{D}\right)+\mathrm{CH}_{4} \rightarrow\left(\mathrm{CH}_{3} \mathrm{OH}\right)^{*} \rightarrow \mathrm{CH}_{3}+\mathrm{OH}$
(b) additon-elimination reaction - upon complex formation, only one now bond is formed.

$$
\text { e.g. } \mathrm{O}\left({ }^{3} \mathrm{p}\right)+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow\left(\mathrm{OC}_{2} \mathrm{H}_{4}\right)^{*} \rightarrow O \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}
$$

(i) molecule + molecule

e.f. $H_{2}+\mathrm{D}_{2} \rightarrow 2 \mathrm{HD}$
$E_{a} \geq 70$ keal/mol
e.g. $\mathrm{H}_{2}+\mathrm{D}_{2} \rightarrow 2 \mathrm{HD}$
$\mathrm{Ea}_{\mathrm{a}} \geq 70$ keal/mol
direct reaction
(ii) radical + Ratuated molecale
iii) radical + unsatunted molecule (ii) radical + unsatuanted molecule (iv) radical + radical

e.f. $\begin{aligned} & \mathrm{OH} \xrightarrow{\mathrm{H}_{2}} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H} \\ & \mathrm{E}_{\mathrm{a}} \simeq 4 \text { cal hol }\end{aligned}$

Two-dim. contour plot of PES.

(B) Activated reaction - a veation with bavier
[sxauple] The key veation for the cherical lase
$\mathrm{F}+\mathrm{H}_{2} \rightarrow \mathrm{HF}(v)+\mathrm{H}$
$H F(V=2) \rightarrow H F(v=1)+h \nu$
the HF product is tighly vibratorally excited, perking is $V=2$ (a population invesion)
why?

Acc. chem. Res. $5(1992) 161^{31}$
polanyi's mule
(Effects of barrier location)
Sally bevies:
The reaction expergicity is released while A and $B C$ are approaching each other (attrative energy release)
\rightarrow vibrational excitation of the $A B$ product.
Late barrier:
The energy is released as $A B$ wound from C (repulsive energy release)
\rightarrow traualationally hot products.
One step further: energy disposal $\stackrel{?}{\stackrel{ }{\leftrightarrows} \text { energy vequirement }}$

LATE BARRIER .

$$
J c p 51(1969) / 439
$$

Not all forms of energy are equally effective in diving chemical reactions!

Can one extend the use of Polanyi's mule to other analogous 32
reactions? Yea!
Hammond's postulate (1955) or Evans-folaryi relationship e (1938):
In a series of analogous reactions, the more exoergic the reaction, the more the transition state will resemble the reactants is structure and the lower the bavier will be.

Esr. J. Chem. 19 (1980) 330.

$$
\begin{aligned}
& X+H_{2} \rightarrow H X+H \\
& (X=F, C l, B r, I)
\end{aligned}
$$

semi-emprical calculation of bond order and the barrier height.

(C) Capture reaction

- applicable to many ion+molecule and radical + radical reactions
- no barrier; the reaction is governed by long-range attraction and often forms an intermediate complex.
(i) Concept of centrifugal energy

Consider a two-particle collision, Newton pointed out that it (a central force system) requires the angular momentum ($l \equiv \mu R \times \dot{R})$ being conserved. There are correspondly two terms in the kinetic energy of the relative motion,

$$
\begin{equation*}
T=\frac{1}{2} \mu \dot{R}^{2}=\frac{1}{2} \mu \dot{R}^{2}+l^{2} / 2 \mu R^{2} \tag{3.53}
\end{equation*}
$$

Recalling the impact parameter $b, l=\mu v b$
and $T=\frac{1}{2} \mu \dot{R}^{2}+E_{T} b^{2} / R^{2}$

Where $E_{T}=\frac{1}{2} \mu v^{2}$ ($v=$ initial relative veloicty of the colliding-neatatat).3
During the collision, as P decreases, the kinetic energy that is wholly translational, is being converted into centrifugal energy, $E_{T} b^{2} / R^{2}$, at the expense of the first term (the radial kinetic enegey). The total enegy of the system is

$$
\begin{equation*}
E_{T}=T+V(R)=\frac{1}{2} \mu \dot{R}^{2}+E_{T} b^{2} / R^{2}+V(R) \tag{3.56}
\end{equation*}
$$

Two ways to view the centrifugal energy:
(a) grouping it into kinetic ene ry

$$
\begin{align*}
& E_{+}\left(1-b^{2} / R^{2}\right)=\frac{1}{2} \mu \dot{R}^{2}+V(R)=E_{\perp} \tag{3,57}
\end{align*}
$$

The approach motion of the two molecules is thus equivalent to that of a particle of mass μ moving in a potential $V(R)$ with an effective kinetic energy (i.e. the energy along the line of centers) equal to $E_{T}\left(1-b^{2} / R^{2}\right)$. The la gee $b i 2$, the smalls is this "effective" kinetic energy. This is the view we used in. II-4. (c) for the line-of-centers model.
(b) grouping it into potential energy, as an effective potential

$$
\begin{equation*}
V_{\text {eff }}(R)=V(R)+E_{T} b^{2} / R^{2} \tag{3,58}
\end{equation*}
$$

The centrifugal energy now acts as a repulsive contribution to Veff (is. a centrifugal barier) in that it prevents the too-close approach of the colliding molecules. As the two molecules approach each other, their centrifugal energy (due to the relative rotation of the two molecules) $E_{T} b^{2} / R^{2}$ increases at the expense of the potential and the radial kinetic energy (\because total energy is conserved). Eventually, they reach the small at sep oration Po, the twining print or the distance of closest approach, which is the point where $\dot{R}=0$, There,

$$
\begin{equation*}
E_{T}=V\left(R_{0}\right)+E_{T} b^{2} / R_{0}^{2} \tag{359}
\end{equation*}
$$

Here, $b_{3}>b_{2}>b_{1}>0$
Note the bumps i $\operatorname{Vapf}(R)$ for $0 \leq b \leq b_{2}$. The dashed lines are for $V=0$
(ii) Langevin (1905) model

With the concept of centrifugal energy (banner), let us consider an ion molecule reaction for estimating its reaction rate.

$$
\mathrm{Cl}^{-}+\mathrm{CH}_{3} \mathrm{Br} \rightarrow \mathrm{Br}_{r}^{-}+\mathrm{CH}_{3} \mathrm{Cl} \quad \text { (SN2 reaction). }
$$

Cl^{-}and $\mathrm{CH}_{3} \mathrm{Br}_{r}$ interact at long range through the charge and induced dipole interaction (a reaction without threshold)

$$
\begin{equation*}
V(R)=-\frac{1}{2} \frac{\alpha e^{2}}{R^{4}} \tag{3.60}
\end{equation*}
$$

α : polauzatility of the neutral mole able CHBr , and $\overline{e^{-}}=4.8 \times 10^{-10}$ es

$$
V_{\text {eff }}(R)=V(R)+l^{2} / 2 \mu R^{2}=-\frac{1}{2} \frac{\alpha e^{2}}{R^{4}}+\frac{E b^{2}}{R^{2}} \quad(3,61)
$$

To find the maximum of Veep, ie. the location of the centrifugal bavice, $R^{*}, d V_{\text {ep }} / d R=0$ at R^{*} (3.62) The criterion for reaction is that the molecules must reach R^{*} with at least pome kinetic energy left for reaction to occur,

$$
\text { From (3.62) } \begin{gather*}
E-V_{\text {eff }}\left(R^{*}\right)=0 \tag{3.63}\\
R^{*}=\left(\alpha e^{2} / E\right)^{1 / 2} / b \tag{3.64}\\
V_{\text {eff }}\left(R^{*}\right)=E^{2} b^{4} / 2 \alpha e^{2} \simeq E
\end{gather*}
$$

So the critical impact parameter $b_{\text {max }}$ is

$$
\begin{align*}
& b_{\text {max }}=\left(2 \alpha e^{2} / E\right)^{1 / 4} \tag{3.66}\\
& \sigma_{L}=\pi b_{\text {max }}^{2}=\pi\left(2 \alpha e^{2} / E\right)^{1 / 2} \tag{3.67}
\end{align*}
$$

For a typical small polyatomic molecule

$$
\alpha \cong 3 \times 10^{24} \mathrm{~cm}^{3}
$$

at room temperature $E=K T \cong 4 \times 10^{-14} \mathrm{eg} /$ molecule
Langevin model leads to

$$
\begin{aligned}
& \text { model leads to } \\
& \sigma_{L} \cong 2 \times 10^{-14} \mathrm{~cm}^{2} \simeq 200 \AA^{2} \quad \text { (lager than hard-sphere } \sigma!\text {) }
\end{aligned}
$$

, which iv very close to experimental values.
The model also predicts that the reaction cos section exhibits a $E^{-1 / 2}$ dependence, again in agreement with the observations for many ion-molecule reactions.

